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Motivated by the question of stability, in this letter we argue that an effective quantum-like theory
can emerge in complex adaptive systems. In the concrete example of stochastic Lotka-Volterra
dynamics, the relevant effective “Planck constant” associated with such emergent “quantum” theory
has the dimensions of the square of the unit of time. Such an emergent quantum-like theory has
inherently non-classical stability as well as coherent properties that are not, in principle, endangered
by thermal fluctuations and therefore might be of crucial importance in complex adaptive systems.

PACS numbers:

Introduction: That many-body systems can harbor
emergent phenomena not present in the microscopic de-
scription of such systems has been well known in the
literature on condensed matter physics [1]. For example,
emergent quantum critical phenomena at low tempera-
tures can be described by effective quantum field theo-
ries, which are not inherent in the microscopic description
of actual materials that exhibit such emergent phenom-
ena [1]. In this letter we argue that effective “quantum”
theory can emerge in complex adaptive systems, even
though the microscopic dynamical description of such
systems is stochastic and dissipative. We emphasize that
in our case we are talking about an emergent “quantum”
framework (see also [2–5]), which can be used to define
different effective theories. The non-reductionist nature
of emergent phenomena has been already emphasized in
the past [6]. Usually one invokes energetic arguments
for the emergence of certain correlated states of mat-
ter. In our proposal the crucial distinguishing aspect
of emergent “quantum” theory would be the emergent
“quantum” stability, as implied by the emergent “quan-
tum” coherence. We emphasize the unique nature of
quantum stability and distinguish it from its classical
counterpart (whether in the classically deterministic or
stochastic contexts). Also, as shown in the context of
quantum information and quantum computation, the in-
formational and computational consequences of quantum
coherence cannot be modeled by purely classical (either
deterministic or stochastic) systems [7]. Thus the compu-
tational aspects of emergent “quantum” systems would
be quite unique, as opposed to their classical counter-
parts. Therefore, it might be advantageous for complex
adaptive systems on various grounds (stability, informa-
tional and computational aspects) to display emergent
“quantum” behavior in certain regimes (defined by an
emergent, or “mock”, Planck constant Y.) Our proposal
regarding the emergence of effective “quantum” theory
in complex adaptive systems should be understood as a
working hypothesis, worthy of further exploration and
elaboration. In what follows we discuss various argu-

ments for such an emergent mock quantum theory and
argue that the new non-classical kind of stability associ-
ated with such an emergent quantum behavior should be
natural and advantageous for adaptable complex systems
[8]. After presenting our main argument for the emer-
gence of effective “quantum” theory in complex adaptive
systems, we also point out that such an emergent mock
quantum theory is natural in non-linear complex dissipa-
tive systems, as pointed out by ’t Hooft in a completely
different physical context of quantum theory of gravity
[9]. We adapt ’t Hooft’s reasoning in order to argue,
once again, for the emergence of effective “quantum” the-
ory in complex adaptive systems. Finally, we illustrate
our main point about the emergence of mock “quantum”
theory in the context of the stochastic Lotka-Volterra dy-
namics. We emphasize that our proposal can be seen as
a very natural extension of the recent experimental and
theoretical work on the emergent quantum-like physics
found in the context of fluid dynamics [3, 4].
Emergent “Quantum” Theory: We start addressing the

technical content of our proposal by representing a given
deterministic model (e.g. the Lotka-Volterra system) in
the Hamilton-Jacobi picture, ∂S∂t +H(Qi, Pi ≡ ∂S

∂Qi
) = 0.

Here, the action is defined by the canonical expression
(Qi denotes the configuration variables and Pi their con-
jugate momenta) S =

∫
(PiQ̇i−H)dt. For such a general

deterministic model described in the Hamilton-Jacobi
picture, the phase space volume is conserved (the vol-
ume density of phase space being ρ) ∂ρ

∂t + ∇(ρ~v) = 0,

where the velocity ~v is defined as vi ≡ Q̇i, and in the

single particle case ~v = ∇S
m ≡ ~P

m . Inspired by the for-
malism of Rosen and Schiller [10] we define the following
new variables

ψ ≡ ±√ρ exp(i
S

Y
). (1)

The “mock” (or effective) Planck constant Y appears by
dimensional arguments given this definition and the di-
mensionality of the action S. For example, in the case of
the Lotka-Volterra dynamics the dimension of the action
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is τ2, τ having the dimension of time. In the next section
we apply our mock-quantum formalism to the specific ex-
ample of the Lotka-Volterra model [11, 12], but for now
we keep our discussion more general. The variable ψ in
Eq. 1 satisfies the following “ψ-equation” [10]

iY
∂ψ

∂t
= H(Qi,−iY

∂

∂Qi
)ψ + VQ(ψ,ψ∗)ψ. (2)

There is also the complex conjugate equation for ψ∗.
Note that in this expression −VQ is the so-called “quan-
tum” potential (of de-Broglie and Bohm [13–15]), which
depends on ψ and ψ∗ and comes from the kinetic term
in the action. In the case of the canonical (single par-

ticle) kinetic term
P 2

i

2m , the quantum potential is VQ =
Y2

2m

∇2(
√
ρ)√
ρ . As pointed out in a different context, in which

the real Planck constant ~ appears instead of its “mock”
counterpart Y [10], the above equation (2) does look like
a non-local and non-linear “Schrödinger-like” equation.
(Obviously the canonical Schrödinger equation is given
by setting VQ ≡ 0.) This non-local and non-linear dy-
namics evolves, in general, pure states into mixed states,
and thus, it is not coherent (and not unitary) in the sense
of the canonical linear “quantum” theory [10].

This procedure of rewriting the usual classical equa-
tions of motion in terms of a non-linear (and non-local)
generalization of the usual Schrodinger equation goes
back to the work of Rosen and Schiller. The essential
idea is easy to understand once one recalls the de-Broglie-
Bohm rewriting of the canonical Schrodinger equation
in terms of the action variable (the phase of the wave
function) and the probability density (the square of the
modulus of the wave-function). In that familiar case one
gets the usual classical equations of motion in which the
canonical potential is corrected by the quantum poten-
tial. What Rosen and Schiller observed is that this pro-
cedure can be inverted and that the classical equations
of motion can be rewritten as a Schrodinger equation in
which a new potential (i.e. the quantum potential) is
added to the Hamiltonian featuring in the Schrodinger
equation, making the resulting Schrodinger-like equation
non-linear and non-local (because of the explicit depen-
dence of the quantum potential on the wave-function).

The above rewriting is true for deterministic systems
(such as the Lotka-Volterra dynamics), and in such sys-
tems the dynamics can be dominated by a single attrac-
tor or a global minimum, yielding systems that lack flex-
ibility. In a realistic complex system such deterministic
dynamics should be supplemented with a source of noise,
or other environmental factors not included in the model,
η, in which case the stability analysis is generalized from
the deterministic to stochastic analysis [16]. The pres-
ence of multiple minima and the stochastic transitions
brings the concepts of metastability and multi-stability
that enrich the dynamics of complex systems [17]. Nev-
ertheless, in such classical forms of stability there is in-

herent dichotomy between the stability and control on
one side and the flexibility on the other. The control of
multistable systems is of great practical importance and
an active area of research [18].

In this work we propose a novel (“quantum”) type of
stability in which the “quantum” constraints and linear-
ity can provide stability and flexibility at the same time,
and we argue that this new type of stability can emerge
in complex systems if the system and/or the environ-
mental factors are adaptive. Biological systems provide
perfect examples of such adaptive behavior. In a cell,
any metabolic process or a pathway is strongly coupled
to the homeostatically regulated intracellular environ-
ment. Ever since the enclosure of self-replicating RNA in
a membrane, the pathways and the intracellular environ-
ment are evolving simultaneously and their interaction,
while extremely important, is not understood to this day.
We argue that it is advantageous for an adaptive com-
plex system to develop this new type of “quantum” sta-
bility and linearity and show how it can emerge if the
environmental/stochastic source η cancels the non-linear
and non-local part of the “ψ-equation”, turning it into
an emergent and effective Schrödinger equation. In the
presence of the environmental/noise term η, the equation
(2) should be modified to

iY
∂ψ

∂t
= H(Qi,−iY

∂

∂Qi
)ψ + VQ(ψ,ψ∗)ψ + η︸ ︷︷ ︸

≈0

, (3)

where we have indicated that the VQ(ψ,ψ∗)ψ and η can
be combined into one effective term which according to
our proposal cancels in a complex adaptive environment.
Note that such cancellation would be difficult to achieve
if η is purely stochastic and hence the environment too is
expected to be adaptive. Since η is expected to contain a
stochastic component we discuss later the consequences
of imperfect cancellation in Eq. 3. In our proposal, the
environmental factors crucially depend on the “holistic”
description of the system, and hence a complex adaptive
system can adjust “holistically” to the adaptive environ-
ment (and vice versa), leading to the emergence of an ef-
fective “quantum” dynamics. However, given the under-
lying classical origin of our “mock” quantum, the Bell in-
equality is not violated. (Note that this is somewhat rem-
iniscent of the observed de-Broglie-Bohm-like behavior of
guided droplet “particles” in a vibrating bath of classical
fluid [3, 4]. In particular, the above cancelation mech-
anism is directly analogous to the “harmony of phases”
[4] experimentally found in the emergent quantum-like
physics in the context of fluid mechanics. Such systems
also do not violate the Bell inequality.) The process by
which mock-quantum framework emerges is in essence
the reverse of the decoherence approach to the quantum-
to-classical transition [19], as the system as a whole “re-
coheres”. Obviously, this could happen only if η depends
on ψ, or, in other words, if the environment is adaptive
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and “holistic” (i.e. depends on ψ and ψ∗). In this case,
the holistic “mock quantum” wave function ψ, by its def-
inition (1), can be adjusted to the “holistic” changes in
an adaptive environment represented by the noise term η,
and vice versa, thus ensuring the robustness of the emer-
gent “quantum” description. The more fundamental rea-
son for the advantageous nature of emergent “quantum”
theory might be found in the linear structure of quan-
tum theory, which is tightly related to the concept of of
maximally symmetric Fisher information [20, 21]. The
adaptive dynamics of complex systems would thus ad-
just the whole system so that only the linear part of the
above “ψ-equation” form of the complex dynamics is left.
This selection mechanism would then lead to effective or
“mock” quantum theory

iY
∂ψ

∂t
= H(Qi,−iY

∂

∂Qi
)ψ. (4)

Note that, given what we know about canonical quantum
theory, here ψ represents an emergent amplitude of proba-
bility. This is radically different of the well-known rewrit-
ings of stochastic equations in terms of a Schrödinger-like
equation for classical probability. We emphasize that this
emergent quantum theory is distinct from the underlying
quantum theoretic description at the molecular biochem-
ical level, given the usual decoherence effects [19].

We now address the question of dissipation in complex
adaptive systems. The issue of emergence of quantum
theory in classical dissipative systems has been (perhaps
surprisingly) discussed in a completely different context
of the fundamental physics of quantum gravity [22], by
’t Hooft [9]. Note that there exist other discussions of
emergent quantum theory [23]. However, ’t Hooft’s dis-
cussion of emergent quantum theory is particularly in-
teresting for us because of its crucial emphasis on dissi-
pation. Translated into our context, ’t Hooft’s argument
runs as follows. The “mock” Schrödinger equation: ∂ψ

∂t =

−iΩψ, Ω ≡ H

Y , can be reproduced by ’t Hooft’s system:

dϕ(t)
dt = ω(t), dω(t)

dt = −κ2
df2

dω , f(ω) ≡ det(Ω − ω),
where ϕ is valued between 0 and 2π and ψ is periodic
in ϕ: ψ(ω, ϕ) = ψ(ω, ϕ+ 2π), and the function f(ω) has
zeros at the eigenvalues of Ω. ’t Hooft’s point is that
the eigenvalues of Ω get attracted to the zeros ωi ex-
ponentially in time, as the system enters its limit cycle
[9]. Note that ’t Hooft is concerned with the emergence
of the canonical quantum theory from some more funda-
mental framework (such as quantum gravity) and he does
not discuss emergent quantum theory in complex adap-
tive systems, which is our main concern. However, given
what we have already said in this section, we see that ’t
Hooft’s formalism can serve as a precise illustration of our
central idea regarding the emergence of “mock” quantum
theory in dissipative and adaptive complex systems. We
can use this proposal in our context to argue that the
deterministic complex adaptive system, characterized by

an adaptive environment, described by the above dissi-
pative system of ’t Hooft, can lead to an emergent mock-
quantum theory. To argue this we use the action-angle
canonical variables: I ≡

∫
PidQ

i, ϕ ≡ ∂S
∂I . In the absence

of ’t Hooft’s dissipation dω(t)
dt = 0, we have the canoni-

cal equations dI
dt ≡ −

∂H
∂ϕ = 0, and dϕ(t)

dt ≡
∂H
∂I = const.

Thus, in the presence of an environment modeled by the
above ’t Hooft’s dissipation function f2 one can, follow-
ing ’t Hooft’s argument [9], expect the emergence of effec-
tive “quantum” theory. Once again, this example indi-
cates that our proposal for emergent “quantum” theory
in complex adaptive systems is in principle realizable.
Note that, more recently, ’t Hooft has argued for a cellu-
lar automaton interpretation of canonical quantum the-
ory [24]. Given what is known about the importance of
cellular automata for modeling of complex adaptive sys-
tems [25], it is natural to apply this most recent ’t Hooft’s
reasoning [24] to generic complex adaptive systems and,
once again, argue for the emergence of “quantum” the-
ory in which the effective “Planck constant” is given by
dimensions of the dynamical action that describes the
particular complex system. Finally, let us address briefly
the question of robustness of the emergent “quantum”
theory in complex adaptive systems. In particular, one
might ask what happens to the emergent Schrödinger
equation under imperfect cancellation in Eq. 3, i.e., by
adding a perturbation to the “mock” Schrödinger equa-
tion. The natural proposal here is that precisely such
perturbations will lead to the “collapse” of the emer-
gent “wave function” and the actually observed values
of measured quantities (with the probability distribution
governed by the Born rule). Thus the perturbations in
(adaptive) noise would be crucial for a dynamical “col-
lapse” of the emergent Schrödinger “wave function” along
the lines of various proposals reviewed in [26]. (The cru-
cial role of noise in the emergence of classical behavior
in the de-Broglie-Bohm interpretation of the canonical
quantum theory is nicely summarized in [14].)

A related question is if the mock-quantum framework
described here can be applied to the non-Hamiltonian
systems. In the case of non-Hamiltonian systems, one
would need to separate the Hamiltonian piece from the
rest of dynamical equations in question (such as the dissi-
pative piece). The non-Hamiltonian piece, as well as the
imperfect cancellation will then act as pertrurbations of
the “mock quantum” dynamics, which in turn will lead
to the “collapse” of the emergent “wave function” and
the actually observed values of measured quantities (with
the probability distribution governed by the Born rule).
Alternatively, the dissipative piece can be significantly
reduced through cancelation in a similar way in which
the dynamical non-linearity cancels the dissipative and
dispersive effects in the formation of the dissipation soli-
tons. The emergence of mock-quantum, however, will
only be possible for a narrow range and type of environ-



4

mental conditions. Below, we illustrate our proposal in
the example of the Lotka-Volterra system.

The Lotka-Volterra example: Now we illustrate our
proposal by considering the Lotka-Volterra system. The
deterministic Lotka-Volterra system [11] specifies the
number of species and how their populations interact and
change in time. For any number of speciesl with popula-
tion Ni(t) the Lotka-Volterra equations read [11, 12]

Ṅi = εiNi − β−1i
m∑
j=1

αijNiNj , (5)

where Ṅi denotes the time (t) derivative, εi is the relevant
autoincrease or autodecrease parameter, βi is Volterra’s
equivalent number parameter and αij (αij > 0 and αij =
−αji) denotes the interaction strength between the i and

the j species [11, 12]. The stationary (Ṅi = 0) population
levels Ni = qi occur for εiβi +

∑m
j=1 αijqj = 0, where it

is usually assumed that αij is nonsingular and qi > 0
[12]. The classical Hamiltonian for the Lotka-Volterra
can be written as follows [12]. First we introduce zi ≡
log(Ni/qi). Then the above deterministic Lotka-Volterra
equations read as follows [12]

żi =

m∑
j=1

γijαj(e
zj − 1), γij = −γji, (6)

where γij ≡ αijβ
−1
i β−1j and αi ≡ qiβi. For the two-

species case the canonical variables are z1 = Q, z2 = P,
and the Lotka-Volterra Hamiltonian is [12]

H = γα1(eQ −Q) + γα2(eP − P ). (7)

This deterministic Lotka-Voterra equations can be
rewritten as the canonical Hamilton equations: Q̇ =
∂H
∂P , Ṗ = −∂H∂Q , with γ12 = −γ21 ≡ γ, or in terms
of the Hamilton-Jacobi equations, or simply in terms of
Ni variables.

Now we discuss the emergent mock-quantum theory in
this specific case. According to our proposal, one first
rewrites the deterministic Lotka-Volterra system in the
Hamilton-Jacobi picture by using the variables ψ and
ψ∗. Then one considers the stochastic Lotka-Volterra
system in an adaptive environment in order to argue
for the emergence of a quantum-like, linear, description
in terms of ψ and ψ∗. The emergent “mock quantum”
Lotka-Volterra dynamics is endowed with the properties
we expect from a quantum-like theory. For example, in
the emergent quantum Lotka-Volterra system there ex-
ists the “uncertainty” principle which asserts that the
coordinates (integrals of the numbers of species) and
their conjugate momenta cannot be simultaneously de-
termined. This new fundamental feature should provide
a striking experimental signature of “mock” quantum
theory in the context of the Lotka-Volterra dynamics.
Similarly one would be only able to talk about transition

probabilities from a certain number of species to another
number of species. One would also have the zero point
energy, tunneling and interference as the hallmarks of a
quantum-like theory. In the stationary case, the emer-
gent quantum theory of Lotka-Volterra dynamics advo-
cated in this letter is characterized by the emergent sta-
tionary Schrödinger equation Hψn = Enψn, where En
are the emergent eigenvalues of H and where as usual,
ψn(t) = exp(− i

YEnt)ψn(0), n = 0, 1, 2.... Now, for small

P and Q, which is the linearized approximation of the
slow Lotka-Volterra dynamics, eQ ∼ 1 + Q + Q2/2 and
similarly eP ∼ 1 + P + P 2/2 , and the effective Lotka-
Volterra dynamics is harmonic [12]

H ∼ γ(α1 + α2) +
1

2
(γα1Q

2 + γα2P
2). (8)

The “mock” quantum theory is then mapped to the sim-
ple quantum-like harmonic oscillator with energy levels
given by the standard result for the “energy spectrum”

En = γ(α1 + α2) + Yγ
√
α1α2(n+

1

2
), (9)

where Y ≡ τ2, the dimension of the Lotka-Volterra ac-
tion. The corresponding “stationary wavefunctions” ψn
are given in terms of the appropriate Hermite polynomi-
als. In this case all transition probabilities can be com-
puted exactly. Similarly the classical variables Q and P
become the canonically normalized operators Q̂ and P̂ ,
obeying the canonical commutation relations [Q̂, P̂ ] = iY.
For a given “quantum” state, this commutation rela-
tion in turn implies the canonical uncertainty relation
between ∆Q and ∆P . Therefore in the emergent “quan-
tum” phase the Lotka-Volterra variables Q and P and
therefore z1 and z2, cannot be simultaneously measured.
In the case of the above harmonic oscillator (H.O) ap-
proximation, for the case of the stationary states with
the energy En, the quantum potential is simply given by
[13]

V
(H.O.)
Q = Yγ

√
α1α2(n+

1

2
)− 1

2
γ
√
α1α2Q

2. (10)

This follows from the exact solution of the “mock
Schrödinger equation”, which involves the standard Her-
mite polynomials. The time dependent form of the
“mock-quantum potential” in our situation can be also
easily inferred from the explicit solution of the canonical
quantum harmonic oscillator [13]

V
(H.O.)
Q (t) = −γ

2

2
α1α2(Q−A cos (γ

√
α1α2t))

2+
Y
2
γ
√
α1α2.

(11)
This expression represents the time-dependent “holistic”
response of the environment in our proposal, i.e. it deter-
mines the negative of the “holistic noise” term η. (Recall

that ψV
(H.O.)
Q (t) + η → 0, is a necessary criterion for the
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emergence of effective mock quantum theory, in this case,
in the harmonic oscillator approximation of the stochas-
tic Lotka-Volterra dynamics.)

We remark that the effective (mock) Planck constant
is introduced by dimensional arguments in the rewriting
of the classical dynamics in terms of an effective wave
function. Because of the fact that the action for that
classical dynamics features in the phase of the effective
wave function, something has to compensate the dimen-
sionality of that action in the dimensionless phase. This
consideration is quite general and it does not rely on a
having a simple harmonic oscillator-like system as an ac-
tual example. The physical meaning of such an effective
Planck constant is tied to the physical meaning of the
action, and the actual value of the mock Planck con-
stant is system-dependent and not in general, universal
(unlike the fundamental Planck constant from canonical
quantum theory).

Note that the crucial prediction of the emergent quan-
tum theory in the Lotka-Volterra system in an adaptive
environment is the emergent quantum stability of the dis-
crete energy levels as well as the existence of the associ-
ated vacuum energy. The transitions between discrete
energy levels could be induced by coupling the Lotka-
Volterra system to another emergent quantum system.
Similarly, the Lotka-Volterra oscillations, which in our
case represent cycles in a phase space, get quantized. In
general, beyond the harmonic oscillator approximation,
we have to solve the mock quantum system (given by
the above H in (7)) numerically. (One could also con-
sider the small P limit for arbitrary Q, in which case a
WKB analysis is possible.) The harmonic approxima-
tion is mainly interesting from the conceptual point of
view, because it illustrates the emergence of discrete en-
ergy levels and thus the associated “quantum” stability
that we propose. However, it might be also interesting
from a more practical point of view, since our proposal
could be tested on a complex system operating in the har-
monic oscillator limit of the Lotka-Volterra system. We
see that the environmental “holistic noise” in this sim-
plified harmonic oscillator case is controlled by a simple
oscillatory (harmonic) function that depends on variable
Q and the wave function ψ, which for the ground state
is a simple Gaussian. This means that in the case of
two interacting species, whose concentrations are dually
related, as the momentum is to position in the case of
harmonic oscillator, an appropriate oscillatory environ-
ment can be obtained that would lead to the emergence
of the mock quantum harmonic oscillator (with stable
“energy” levels). We note that oscillatory phenomena
are ubiquitous in biology, both at tissue and at cellular
level [27], and are essential for the functioning of biologi-
cal systems. It is then tempting to conjecture that by in-
vestigating such oscillations, a potential evidence for the
necessity and emergence of mock quantum stability can
be demonstrated. While real biological systems might be

too complicated to analyze, a simplified synthetic regula-
tory cell or an auto-catalytic chemical process, in which
the nature of these oscillations can be controlled, could
be a platform for investigating the relevance of our pro-
posal [28]. Essentially what we propose as a test of our
theoretical discussion should be seen as a direct analog
of the recent quantum-like fluid dynamics experiments
[3, 4], however, to be conducted in the context of syn-
thetic biology.

Our claim would be that there should exist an emer-
gent time scale τ at which the system would have to be
described by an emergent “quantum” dynamics proposed
in this letter. In particular, the emergent “quantum”
dynamics would imply a new non-classical stability in
the Lotka-Volterra system, which cannot be modeled by
the usual methods of non-linear and stochastic dynamics
[16]. Finally, we note that the formal quantization of the
Lotka-Volterra system (using the usual Planck constant
~) has been discussed previously in the literature [29].
However, that discussion does not have anything to do
with the central point of this letter regarding the emer-
gence of effective quantum theory in complex adaptive
systems. Next, we compare our proposal to the approach
to quantization known as stochastic quantization [30]. In
this approach (Euclidean) quantization is viewed as a sta-
tionary (equilibrium) limit of a fictitious stochastic pro-
cess (with an extra fictitious evolution parameter) whose
effective “temperature” is given by the Planck constant.
(Even in our case the Euclidean version of our effective,
mock quantum theory, seen from the viewpoint of its Eu-
clidean Feynman path integral, can be also obtained as a
stationary limit of a fictitious stochastic process, charac-
terized by an extra fictitious evolution parameter, with
the crucial difference that in our case the effective Planck
constant is emergent and given by Y.) Note that in our
discussion of effective, mock, quantum theory, the adap-
tive environmental part is crucially needed to cancel the
non-linear and non-local part of the classical dynamics
rewritten in terms of somewhat unusual “wave-function”-
like variables, thus leading to emergent “quantum” dy-
namics in which the evolution parameter corresponds to
the real, physical time.

Conclusion: We offer some general comments that
should be useful for further investigations of our proposal:
1) One natural interpretation for the proposed “mock”’
quantum theory could be understood as a reverse analog
of “quantum Darwinism” of Zurek [19] considered in the
context of decoherence models of the canonical quantum-
to-classical transition, since in our proposal the effective
quantum behavior emerges. 2) The dimensions and the
value of the fundamental parameter, Y, are system de-
pendent (e.g., different values of τ for different Lotka-
Volterra systems). 3) In many situations one considers
discrete Lotka-Volterra system of equations as opposed
to the continuous one; it is natural to ask whether the
parameter τ can be constrained from the point of view
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of discrete Lotka-Volterra dynamics. 4) Finally, the pro-
posed emergent “mock” quantum theory opens the door
for various collective many-body “mock” quantum effects
in biological systems. Our proposal can be intuitively un-
derstood as a new type of stability in biological systems,
but should be clearly distinguished from the arguments
that canonical quantum physics is relevant in biologi-
cal systems [31]. Our effective “mock quantum” theory
comes with a new fundamental deformation parameter
(e.g., the time scale in the Lotka-Volterra models) that
is emergent and thus distinguishable from the canoni-
cal fundamental quantum theory which usually suffers
in competition with realistic thermal biological environ-
ments. Obviously in this note we have only scratched the
surface [32] and further work is needed to understand the
full implications of our proposal
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